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Abstract. We detennine the ground-state phase diagram of the Hubbard model on the square 
lattice allowing for homogeneous spiral, antiferromagnetic. ferromagnetic and paramametic 
phases in the overall parameter m g e .  "his is obtained hum a saddle-point approximation 
of a spin-rotation-invaiant f o h  of the slave-boson representation inVoduced by Kotliar and 
Ruckenstein. In adaition we determine analylidy the transition point for infinite repulsive 
ineraction strength between the Nagaoka state and the paramagnetic state on any bipartite 
lattice. 

1. Introduction 

Originally introduced in order to describe magnetism in'transition metals, the Hubbard 
model has been most intensively investigated since Anderson's proposal [l] that the model 
should capture the essential physics of the cuprate superconductors. From earlier attempts 
to obtain the magnetic phase diagram (for an overview see the book by Mattis [2]) one 
can deduce that ferromagnetic' and antiferromagnetic orders compete for strong repulsive 
interaction strength and moderate hole doping, the former being stabilized for a very small 
amount of holes in the half-filled band, whereas the latter is preferred at half filling. More 
recent calculations [3] established that the ground state of the Hubbard model on the square. 
lattice shows long-ranged ant if em magnetic^ order, with a charge excitation gap. However, 
the problem of mobile holes in an otherwise antiferromagnetic background remains mostly 
unsolved, and even the stability of the Nagaoka state has been questioned 141. Suggestions 
for a very wide ferromagnetic domain in the phqe diagram based on the restricted Hartree 
Fock approximation have been made by several authors on the cubic lattice [5],  and on the 
square lattice [&IO]. However, this domain appears'for large interaction strength where 
the Nartree-Fock approximation ceases to be controlled, as for small 0 the paramagnetic 
state is seen to be unstable towards an  incommensurate spin order at a critical Udependent 
density [I  I]. The Gutzwiller v&iational approximation has been applied [,12], even for 
large U ,  yielding results qualitatively similar to the Hartree-Fock approximation. However, 
for large U, a ferromagnetic domain appears only if the density is larger than some critical 
value. The same behaviour holds when the stability of the ferromagnetic state is investigated 
on variational grounds [13-171 or in the high-temperature expansion [lS], whereas several 
authors 119,201 even questioned the appearance of a ferromagnetic domain at all. Attempts 
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to partially satisfy both antiferromagnetic and ferromagnetic tendencies by allowing €or 
other translational-invariant magnetic states which represent compromises between both, 
such as spiral, canted, ferrimagnetic and linearly polarized spin-density waves, have been 
investigated in several frameworks. Shraiman and Siggia [21] demonstrated the existence 
of interaction terms favouring spiral order in an effective classical field theory of doped 
antifemmagnets. The effect of quantum fluctuations in spiral phases has been considered 
in [22], and a double spiral structure has been identified as the lowest-energy state there, and 
both in the Gutzwiller variational approximation [23] and in the Hartre-Fock approximation 
[6,7,9], a spiral magnetic solution is found to be lower in energy than the antiferromagnetic 
state for any finite doping. Recently more complex solutions of the Hartree-Fock theory 
have been studied, such as domain-wall structures of various kinds [I 1,24461. 

In the Kotliar and Ruckenstein slave-boson technique [27] the Gutzwiller approximation 
appears as a saddle-point approximation of this field theoretical representation of the 
Hubbard model. In the latter the contribution of the thermal fluctuations has been 
calculated [28] and turned out to be incomplete as this representation, even though 
exact, is not manifestly spin rotation invariant. Spin-rotation-invariant [29] and spin- and 
charge-rotation-invariant [30] formulations have been proposed, and the first was used to 
calculate correlation functions 1311 and the spin fluctuation contribution to the specific 
heat [32]. Moieover the instability line of the paramagnetic state with respect to arbinary 
incommensurate spin ordering has been determined [33] and did not exhibit an instability 
towards the ferromagnetic state. Comparisons of the ground-state energy with quantum 
Monte Carlo simulations, including antiferromagnetic ordering 1341 and spiral states [35], 
or with exact diagonalization data I361 have been made and yield excellent agreement, and 
such spiral states have been investigated independently by Amgoni and Shinnati 1371. In 
this paper we determine the domain of the phase diagram of the Hubbard model on the 
square lattice where the ferromagnetism takes place, in the spin-rotation-invariant slave- 
boson theory when spiral states are allowed. In addition we determine analytically the 
critical density n,(U = m) on the d-dimensional hyper-cubic lattice at which the fully 
polarized ferromagnetic state is degenerate with the paramagnetic state as obtained in the 
saddle-point approximation of the slave-boson approach. 

2. Magnetic phase diagram 

We consider the Hubbard model for electrons on the square lattice: 

with nearest-neighbour hopping matrix elements ti., = --f, and the sum over the neighbours 
taken in such a way that the bare band width is 8t. As the expression for the free energy in 
the slave-boson approach when spiral states are allowed has been given in 1361, we simply 
remind the reader that within the saddle-point approximation, the expectation value of the 
number of respectively empty, singly occupied and doubly occupied sites is denoted by e*, 
p i  + p2,  and d2, and the site-dependent averaged magnetization mi by 2popi. Allowing 
For spiral states implies 

pi = p s i  (2) 

i, = (cos +i , sin 4,. 0) (3) 

where the unit vector i; fonns a spiral StTUcture, e.g. 
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with the site-dependent rotation angle 

bi = Q .  Ri Ri =a@, ,  n z ) .  (4) 

Z* = B+L+R- zk B-L-R+ (5) 

Using 

where 

(6) 

(7) 

B+ = (1 /2 f i ) [po(e  + 4 * -&I (8) 

LA = [ I  - dZ - i(p0ip) 2 ] -112 

R* = [ l  - e 2 -  l(p0ip) 2 J -1/2 

one then obtains two quasi-particle bands with the dispersion relation 

Ek.v 
Z 

$(Z: + i ) ( r k  + t k + q )  +Bo - P + U+r(Z: - Zf)'(tk - t k + q )  

+4[2+2-(& + &+a) +B]'}'/' U = fl. (9) 
~. 

The mean-field free energy follows as 

k = -T 
. .  

In [ 1 + exp(-&.,/T)J + U d z  + a(e2+ d2 + p i  + pz - 1) - @o(2dZ + p i +  p z )  

- 2BPPO (10) 
k.u 

where &, ,9 and BO are the Lagrange multipliers enforcing the constraints. One thus has to 
solve the saddlepoint equations with respect to the parameters e, PO, p .  d ,  a,  B ,  BO, and 
Q to obtain F .  (Actually one parameter, say d, would be complex [30,38] with a phase 
q. However this additional parameter plays no role as aF/aq is proportional to sin9 and 
the saddle-point equations deliver q = 0.) Alternatively one can ,first remove the d field by 
,@king the constraint enforced by the Lagrange multiplier 01 into consideration, then define a 
function g(e,  po. p. Q) ,as the maximum of F with respect to Po and 8,  kid then minimize 
g with respect to the parameters e, PO, p and Q. The saddle point of F is reached when the 
minimum of g is obtained. It turned out that this procedure was much easier to implement 
in the computer than that which consists of directly solving the saddle-point equations. 
Moreover we achieved this procedure on the 98 x 98 lattice at T = t / 100 .  The systematic 
error following from finite-size effects is then of the order of W4. In addition we would 
like to stress that we are indeed looking for a saddle point of F,  as having non-vanishing 
Lagrange multipliers only corresponds to a shift of the integration contour for the constraint 
fields. 

Useful analytical results can be obtained by noticing that the Lagrange multiplier If?[ 
is growing like U / 2  at half filling for large U. It thus provides a small parameter ( t k / B )  
allowing for an expansion of the quasi-particle dispersion relation in powers of ( L / U ) ~ ,  and 
thus allowing for an analytical minimization of the free energy. As this procedure leads to 
a rather lengthy calculation 1391, we shall only quote the outcome and compare it with the 
numerical results. 

In figure I we display the x component of the spiral wave-vector as function of the hole 
doping for several values of the. interaction strength. It turns out @at spiral wave-vectors 
which minimize the energy belong 
denoted by (9..4). or Q = (qx, z), hereafter denoted by (4, x ) .  or Q = (0, qx),  hereafter 
denoted by (0,q). At half filling we obtain the AF state as ground state. For U / t  = 60, the 
spiral wave-vector is lying on the diagonal of the first Brillouin zone for small doping. Even 

three different families: either Q = qx( l ,  l), 
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Figure 1. x component o f  the spiral wave-vector as a 
function of doping for U l t  = 60 (curve C), 80 (curve 
B), and 100 (curve A). The jumps indicate the transition 
from the (q .  q )  spiral state and the ferromagnetic stale, 
respectively. to the (q ,n)  spiral state. 

Figure 2. Reduced magnelization m, (see text) as a 
function of doping for U/! = 60 (curve C), 80 (curve 
B),  and 100 (curve A). 7he jumps indicate the m i t i o n  
h m  the (4. q)  spiral state and the ferromagnetic state. 
respectively, to the 1q.n) spiral state. 

though the difference in energy between the (4, q)  and the (4, x )  spiral states, and even 
between both and the antiferromagnetic state, are quite tiny, particularly close to half filling, 
the (4.4) state is lowest in energy. The gain in energy with respect to the antiferromagnetic 
state is found to be US2 in the (q, q)  state, and only US2/2 in the (q, x )  state. In both 
states one obtains 

qx N x - 8 U / t  if 8(t /U)2 << 6 << ( 2 t / ~ ~ ) ~ / ’ .  (11) 

Upon a further increase of the doping the system undergoes a first-order transition to 
another spiral phase, namely the (q,n) phase. However, there is clearly no indication of 
ferromagnetism and thus no qualitative difference with the smaller-U domain as discussed 
in detail in 1361, apart from the appearance of the additional (0, q)  phase in the very close 
vicinity of the spiral-paramagnetic transition. The transition from the (4, x )  phase to the 
(0.9) phase is smooth, i.e. second order, and is only signalled by the fact that Q changes 
from one type to the other as there is a value of the doping such that the collinear state 
(Q = ( x ,  0)) is lowest in energy. For larger interaction strength, i.e. U/r=80 or 100, one 
clearly sees in figure 1 that in the (q, q)  phase qx goes smoothly from x at half filling down 
to 0 at some critical doping 6,. thus signalling the occurrence of a ferromagnetic domain. 
From the numerical data qx is seen to vanish at the transition as (8, - 8)” with U Y or a 
little smaller. 

In order to know whether or not we obtain the fully polarized ferromagnetic state (ms) 
we show in figure 2 the reduced magnetization as a function of the hole doping for the 
same values of U as in figure 1; the reduced magnetization m, is defined as m / n ,  and thus 
takes the value unity in the FPFS. At half filling and for U >> t ,  m, is given by 

(12) m, N 1 - 8(t/U)’ - 104(t/U)4. 

Upon doping m, is first decreased as 

m, = 1 - 8(t /U) ’  - ! ~ ’ 8 ~ / 2 t ’ +  26’ (13) 
but thus increases again upon doping to reach unity exactly when qx goes to zero, thus 
yielding no evidence for a non-fully polarized ferromagnetic state. 

Retuming to figure 1, a further increase of the doping leads to a first-order transition 
from the FPFS to the (q, x )  spiral phase, then to the (0, q) spiral phase and finally to the 
paramagnetic state. Even though m, is still quite large in the ( q , x )  phase, m, N 0.5 
for 8 Y 30-40%, the gain in energy with respect to the paramagnetic state is veIy small, 

if 8( t /U)2  << S << (2t /U)4/3 
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but at least one. order of t magnitude larger than the systematic error following from our 
numerical procedure. This is exemplified in figure 3 where we display the ground-state 
energy  as^ a function of the hole doping for an infinite interaction strength relative to the 
FPFS ground-state energy for both paramagnetic and spiral s&s. One clearly sees that the 
gain in energy is substantial only where we find the F ~ F S  as lowest in energy. Moreover the 
spiral-paramagnetic phase boundary as obtained from this calculation &d from a diverging 
q-dependent spin susceptibility [33] are in very good agreement. 

Some insight into the stability of the ferromagnetic and spiral states can be gained by 
looking at the behaviour of the Lagrange multiplier B which governs both the band width 
and the magnetic gap. At half filling I f l I  is growing as 

p = -u/2+.12t2/u (14) 

p = - U / 2 +  12t2/U+U563/3U4, i f8(r /U)2~S,<<(2t /U)4i3 (15) 

for U >> r .  thus yielding a band width proportional to J ,  where J is the exchange:coupling, 
and a magnetic gap of order U .  But upon doping, f l  is'considerably decreased as 

to be of order I for 6 z t / U  (in contrast to the HartreeFock approximation where the 
.magnetic gap is given to a good approximation by U m  [9]). Thus, upon doping, the band 
width goes from 4J at half filling up to - 42it for S > t / U ,  where 2: stands as a mass 
renormalization factor, which is close to that obtained in the paramagnetic state. 

In figure 4 we display A, which is defined as  the difference in energy between the 
bottom of the upper magnetic sub-band and the Fermi energy, as a function of the doping 
for several interaction strengths. (Here we set A to 0 in the F& as it is undetermined.) 
It clearly appears that the upper magnetic sub-band does not contribute to the mean-field 
free energy even though the two bands may overlap. However both magnetic sub-bands 
are sufficiently close to one another at the mean-field level that one cannot exclude that 
both would contribute in a more refined calculation, leading for instvce to a reduced 
magnetization, apart from the close vicinity of half filling, where hey definitively separate, 
the upper one merging with the upper Hubbard band which is absent from this calculation. 

Our results are summarized in the phase diagram in figure 5. It consists of six phases. At 
half filling, and half filling only, the ground state is the antiferromagnetic one. Upon doping 
it is unstable towards the (q, 4) spiral phase. In this phase the compressibility is changing 
from negative, for very small doping, to positive, thus leading to a thermodynamically stable 
phase. However, the phase-separated domain is seen to be quite small, much smaller than 
in the Hartree-Fock approximation [lo]. For sufficiently large U ,  i.e. U / t  > 66, the spiral 



4852 B Mdller et ni 

0 
oao 0 0 5  a l a  015 0 2 0  a 2 5  a z  

6 
Figure 4. -Al l  (see ext) as a function of doping for 
Ulr = 20 (curve D). 60 (curve C). 80 (curve 6). 

Slove Boson Phase Diogmm 

3 

Slave Boson Phase Diogmm 
0.05 , , 

I 0.04 'i ' ' \ '  ' 1 

0.00 lu* ' I J  
0.0 0.1 0.2 0.3'0.4,0,,5 0.6 0.7 

" ' "6 , ,  , 

Figure 5. Phase diagram. Full curves: phases bund- 
aries in the slave-bason mean-field theory. Bmken .~ . 

and 100 (curve A). The jumps indicate the transition 
from the (4. q)  spiral state and the ferromagnetic state, 
respectively, to the (4. n) spiral state. 

curves: zro-compressibilily line, separating smgle- 
phase and phase separalpd stales. Dotted curve: phase 
boundary curve between the (4, n) and the (0, q )  stales; 
this is mainly meant as a guide for the eye. owing to 
the difficulty in determining i t  Chain curve: instabil- 
ity curve of the ferromagnetic state as extracted from 
[13]. (ln particular the phase boundary line between 
the ferromagnetic and the spiral states follows from the 
numerical dam which are represented by the circles.) 

wave-vector is moving along the diagonal of the Brillouin zone up to the centre. In that 
case the spiral phase plays its role of compromise between the antiferromagnetic and the 
ferromagnetic phases. For larger doping one obtains a (q, n) phase, possibly a (0, q )  phase, 
and finally, for even larger doping, the paramagnetic phase. The transition from the (4. q )  
phase, or the ferromagnetic one, to the (q, n) phase is first order; the others are second 
order. We were able to determine the transition tine between the (4 .x)  and rhe (0.4) 
phases only for U / t  < 100. For larger U the difference in energy between the two phases 
is smaller than the systematic error originating from finite-size effects. The ferromagnetic 
domain as obtained from this calculation is in good agreement with that obtained by von 
der Linden and Edwards 1131. In particular for U =CO, the ferromagnetic state is unstable 
for 6, > 0.33, while [I31 gives 6, = 0.29, Gutzwiller wave-function calculations allowing 
for spiral states give 8, = 0.375 [23], and high-temperature expansion yields 8, = 0.27 
[181. 

Actually 6, as obtained from our calculation differs only slightly from that obtained 
within the usual Gutzwiller approximation, i.e. with paramagnetic states only. In that case 
we can determine, at U = 00, the critical hole concentration at which the ferromagnetic 
and the paramagnetic states are degenerate. On the d-dimensional hyper-cubic lattice one 
has to solve 

FP(&) = FF(&) (16) 
where the free energy in the paramagnetic state is given by 

&P 
F p  = 2 4  1, dr E&€) 

where p ( c )  is the density of states per spin and, at U = CO, the mass renormalization factor 
becomes 

2,' = 26/( 1 + 6) (18) 
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and 

FP=[:~EE~(E). (19) 

(16) is obviously solved provided 20' = i and p p  = - p ~  as P ( E )  is an even function of E. 
The second condition implies 

2fl(PP) = f l ( @ F )  = 1 - f l ( ! - L P )  (20) 
yielding 2n(pp) = in which case z@,) = 4. Thus (16) is solved at the critical hole 
concentration of f ,  independently of the dimension of the system which is in agreement 
with its numerical determination [33,40]. In this light the limit of infinite dimensions 1411 
appears somewhat special, as it is the only case allowing for a finite value of d for infinite 
U .  Actually this argument is valid for any bipartite lattice, as the only requirement is an 
even density of states, but only applies provided that the paramagnetic state is not unstable 
towards another state for a larger density of holes. 

3. Conclusion 

We applied the slave-boson mean-field approach, first introduced by Kotliarand Ruckenstein 
[U], and then made spin rotation invariant [29,30], to spiral magnetic states in the Hubbard 
model. The phase diagram is found to consist of six regions: at half f i l l i i  the ground state 
is antiferromagnetic. 'Upon doping it is immediately unstable towards the (q, q) spiral phase. 
If the interaction strength is large enough ( U / t  > 66) the spiral wave-vector will reach the 
centre of the first Brillouin zone and we obtain a ferromagnetic repion. Increasing the doping 
further leads to a first-order phase~bansition from either the ferromagnetic (if U / f  S.66) 
or the (q, q)  spiral state (if U / t  < 66) to the (4, x) spiral state, A further increase of 
the doping drives the system through a second-order phase transition to the paramagnetic 
state if U / t  c 57, or to the (0, q)  spiral state and finally to the paramagnetic through two 
second-order phase transitions if U / t  57. The phase boundary of.the paramagnetic state 
is in agreement with that determined in [33]. We compare the ferromagnetic domain with 
that obtained in other frameworks [ 18,231 and particularly with [I31 and they are~all, seen to 
be in qualitative agreement. Moreover, for large U ,  it turns out that the magnetic gap is very 
strongly affected by doping and is even seen to vanish for rather small doping (- 10%). 
As a consequence one obtains a transfer of specaal weight from the upper to the lower 
band upon doping. We put a particular emphasis on the first-order phase transition from the 
ferromagnetic and paramagnetic states at U = CO on the d-dimensional hyper-cubic lattice 
and find a d-independent critical hole doping of I However a more accurate description 

3: of the upper Hubbard~band, including fluctuations, is highly desirable. Work . .  along this line 
is in progress. 

~ ~ 
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